Abstract
Antibody-dependent activation of myeloid cells within the glomerulus plays a central role in rapidly progressive forms of glomerulonephritis. The spleen tyrosine kinase (Syk) is expressed by all leukocytes, except mature T cells, and is required for signalling via the B-cell receptor, Fc receptors, and some integrins. Syk has been proposed as a therapeutic target in glomerulonephritis. However, little is known of Syk activation in human kidney disease, while studies in experimental glomerulonephritis using non-selective Syk inhibitors require validation via conditional gene deletion. The current study addressed both of these important points. Syk activation (Tyr(525/526) phosphorylation) was examined in a cohort of 96 patients with different glomerulonephritides. Syk activation was evident in infiltrating leukocytes, mainly neutrophils and macrophages, in 36/40 cases of rapidly progressive glomerulonephritis. In contrast, non-proliferative diseases showed little or no Syk activation. Glomerular and interstitial cells exhibiting Syk activation correlated with renal function and systemic inflammation. Next, we examined mice with conditional Syk gene deletion in myeloid cells (Syk(My) ) versus Syk(f/f) littermate controls in nephrotoxic serum nephritis - a model of rapidly progressive glomerulonephritis. Control Syk(f/f) mice featured a transient neutrophil influx at 3 h and severe disease on day 9 of nephrotoxic serum nephritis, with crescent formation, macrophage infiltration, inflammation, kidney fibrosis, and renal dysfunction. In contrast, Syk(My) mice had significantly reduced neutrophil and macrophage infiltration despite equivalent glomerular deposition of humoral reactants. Syk(My) mice exhibited reduced crescent formation, inflammation, and fibrosis, with improved renal function on day 9 of nephrotoxic serum nephritis. In conclusion, Syk activation is prominent in infiltrating myeloid cells in human rapidly progressive glomerulonephritis, and functional studies demonstrate that Syk deletion in myeloid cells is protective in mouse nephrotoxic serum nephritis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.