Abstract

To investigate the prospects of a multigradient-echo (mGRE) acquisition for in vivo myelin water imaging at 0.55 T. Scans were performed on the brain of four healthy volunteers at 0.55 and 3 T, using a 3D mGRE sequence. The myelin water fraction (MWF) was calculated for both field strengths using a nonnegative least squares (NNLS) algorithm, implemented in the qMRLab suite. The quality of these maps as well as single-voxel fits were compared visually for 0.55 and 3 T. The obtained MWF values at 0.55 T are consistent with previously reported ones at higher field strengths. The MWF maps are a considerable improvement over the ones at 3 T. Example fits show that 0.55 T data is better described by an exponential model than 3 T data, making the assumed multi-exponential model of the NNLS algorithm more accurate. This first assessment shows that mGRE myelin water imaging at 0.55 T is feasible and has the potential to yield better results than at higher fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.