Abstract

Myelin proteolipid protein (PLP) and its alternatively spliced isoform, DM-20, are the major integral membrane proteins of central nervous system myelin. It is known that PLP and DM-20 are delivered to myelin by a finely regulated vesicular transport system in oligodendrocytes. Evolutionarily, it is believed that ancestral DM-20 acquired a PLP-specific exon to create PLP, after which PLP/DM-20 became a major component of central nervous system myelin. We purified PLP as an inositol 1,3,4,5-tetrakisphosphate-binding protein after solubilization in a non-organic solvent. However, under the isotonic condition, PLP binds inositol hexakisphosphate (InsP6) significantly, not inositol 1,3,4,5-tetrakisphosphate. Most of the InsP6-binding proteins are involved in vesicular transport, suggesting the involvement of PLP in vesicular transport. We separated DM-20 from PLP by CM-52 chromatography and showed that DM-20 has no InsP6 binding activity. These findings indicate that the PLP-specific domain confers the InsP6 binding activity and this interaction may be important for directing PLP transport to central nervous system myelin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.