Abstract
Light microscopic immunocytochemical studies have shown that myelin-associated glycoprotein (MAG) is localized in myelin of the developing CNS; but in the adult, MAG appears to be restricted to periaxonal regions of myelinated fibers. To extend these observations, we embedded optic nerves of 15-day-old rats, adult rats, and an adult human in epon after aldehyde and osmium tetroxide fixation. After 5% H2O2 pretreatment, thin sections were immunostained with 1:250-1:5,000 rabbit antiserum to rat CNS MAG according to the avidin-biotin-peroxidase complex (ABC) method. Dense deposits of reaction product covered compact myelin in both developing and adult optic nerves. When we used 1:500, 1:1,000, and 1:2,000 anti-MAG, less intense immunostaining of myelin was found. We also obtained the same localization in compact myelin with the peroxidase-antiperoxidase (PAP) method. With 1:250 anti-MAG, dense deposits of reaction product were not observed on axolemmal membranes or on oligodendroglial membranes located periaxonally and paranodally. In thin sections of adult human optic nerve, anti-MAG also stained compact myelin intensely. When thin sections of rat and human optic nerves were treated with preimmune or absorbed serum, no immunostaining was observed. Immunoblot tests showed that our MAG antisera did not react with any non-MAG myelin proteins. In contrast with earlier light microscopic data, this study shows that MAG localization does not change during CNS development; both developing and adult compact myelin sheaths contain MAG. As many biochemical studies also show that MAG is present in compact myelin, we suggest that this 100,000 dalton glycoprotein now be called myelin glycoprotein (MGP) instead of MAG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.