Abstract

BackgroundToxoplasmosis is one of the most common parasitic infections in humans. It can establish chronic infection and is characterized by the formation of tissue cysts in the brain. The cysts remain largely quiescent for the life of the host, but can reactivate and cause life-threatening toxoplasmic encephalitis in immunocompromised patients, such as those with AIDS, neoplastic diseases and organ transplants. Toll-like receptor (TLR) adaptor MyD88 activation is required for the innate sensing of Toxoplasma gondii. Mice deficient in MyD88 have defective IL-12 and Th1 effector responses, and are highly susceptible to the acute phase of T. gondii infection. However, the role of this signaling pathway during cerebral infection is poorly understood and requires examination.MethodMyD88-deficient mice and control mice were orally infected with T. gondii cysts. Cellular and parasite infiltration in the peripheral organs and in the brain were determined by histology and immunohistochemistry. Cytokine levels were determined by ELISA and chemokine mRNA levels were quantified by real-time PCR (qPCR).ResultsThirteen days after infection, a higher parasite burden was observed but there was no histological change in the liver, heart, lungs and small intestine of MyD88−/− and MyD88+/+ mice. However, MyD88−/− mice compared to MyD88+/+ mice were highly susceptible to cerebral infection, displayed high parasite migration to the brain, severe neuropathological signs of encephalitis and succumbed within 2 weeks of oral infection. Susceptibility was primarily associated with lower expression of Th1 cytokines, especially IL-12, IFN-γ and TNF-α, significant decrease in the expression of CCL3, CCL5, CCL7 and CCL19 chemokines, marked defect of CD8+ T cells, and infiltration of CD11b+ and F4/80+ cells in the brain.ConclusionMyD88 is essential for the protection of mice during the cerebral installation of T. gondii infection. These results establish a role for MyD88 in T cell-mediated control of T. gondii in the central nervous system (CNS).

Highlights

  • Toxoplasmosis is one of the most common parasitic infections in humans

  • MyD88 is essential for the protection of mice during the cerebral installation of T. gondii infection

  • These results establish a role for MyD88 in T cell-mediated control of T. gondii in the central nervous system (CNS)

Read more

Summary

Introduction

Toxoplasmosis is one of the most common parasitic infections in humans. It can establish chronic infection and is characterized by the formation of tissue cysts in the brain. Toll-like receptor (TLR) activation by parasite molecules, is required for the establishment of this protective immune response. Studies carried out in MyD88−/− mice unambiguously demonstrate that this adaptor molecule is required to induce a protective immune response against T. gondii infection. Using MyD88-deficient C57BL/6 mice infected intraperitoneally with an avirulent strain of T. gondii, they demonstrated that MyD88 was essential for the survival to the acute phase of infection and for early parasite replication control. Such mice are unable to produce IL-12, a major cytokine in the setting of an efficient Th1 response [3]. There is evidence that TLR signaling is strongly implicated, since tachyzoite profilin and glycosylphosphatidylinositol (GPI) have recently been identified as parasite ligands of TLR11 and TLR2/4 respectively [5,6,7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call