Abstract

We have assessed the requirements for Toll-like receptor (TLR) signaling in vivo during early infection with Listeria monocytogenes. Mice deficient for TLR2, a receptor required for the recognition of Gram-positive peptidoglycan, showed equivalent Listeria resistance to wild-type mice. However, mice deficient for MyD88, an adaptor molecule used by all TLRs, showed profound susceptibility with 3-4 logs greater Listeria burden and severe spleen and liver pathology at day 3 postinfection. Listeria-infected MyD88-deficient mice also showed markedly diminished IFN-gamma, TNF-alpha, and NO responses, despite evidence of macrophage activation and up-regulation of MHC class II molecules. We demonstrate that although minor MyD88-independent responses to live Listeria do occur, these are insufficient for normal host defense. Lastly, we performed experiments in vitro in which macrophages deficient in TLR2 or MyD88 were directly infected with Listeria: Although TLR signaling was required for macrophage NO and cytokine production in response to Listeria, handling and direct killing of Listeria by activated macrophages occurred by TLR2- and MyD88-independent mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.