Abstract

Pastures are key feed sources for dairy production and can be contaminated with several secondary metabolites from fungi and plants with toxic or endocrine-disrupting activities, which possess a risk for the health, reproduction and performance of cattle. This exploratory study aimed to determine the co-occurrences and concentrations of a wide range of mycotoxins, phytoestrogens and other secondary metabolites in grazing pastures. Representative samples of pastures were collected from 18 Austrian dairy farms (one sample per farm) between April to October 2019. After sample preparation (drying and milling) the pastures were subjected to multi-metabolite analysis using LC-MS/MS. In total, 68 metabolites were detected, including regulated zearalenone and deoxynivalenol (range: 2.16–138 and 107–505 μg/kg on a dry matter (DM) basis, respectively), modified (3-deoxynivalenol-glucoside, HT-2-glucoside) and emerging Fusarium mycotoxins (e.g., enniatins), ergot alkaloids and Alternaria metabolites along with phytoestrogens and other metabolites. Aflatoxins, fumonisins, T-2 toxin, HT-2 toxin and ochratoxins were not detected. Of the geo-climatic factors and botanical diversity investigated, the environment temperature (average of 2 pre-sampling months and the sampling month) was the most influential factor. The number of fungal metabolites linearly increased with increasing temperatures and temperatures exceeding 15 °C triggered an exponential increment in the concentrations of Fusarium and Alternaria metabolites and ergot alkaloids. In conclusion, even though the levels of regulated mycotoxins detected were below the EU guidance levels, the long-term exposure along with co-occurrence with modified and emerging mycotoxins might be an underestimated risk for grazing and forage-fed livestock. The one-year preliminary data points out a dominant effect of environmental temperature in the diversity and contamination level of fungal metabolites in pastures.

Highlights

  • Grasses and grass-legume mixtures are essential sources of nutrients for herbivores, which can be consumed directly as fresh pastures and preserved as silage and hay

  • Pastures can be a source of toxic or endocrine-disrupting secondary metabolites originated from some plants, fungi, algae, bacteria and lichens residing in the pasture, which can induce a wide range of animal disorders [1,2,3]

  • The grouped metabolites were classified according to their main producers including Alternaria, Aspergillus, Fusarium, Penicillium, lichen-associated fungi, other fungi and unspecific, or according to the kind of metabolites (EAs, PEs and cyanogenic glucosides (CGs)) based on previous reports [35,36]

Read more

Summary

Introduction

Grasses and grass-legume mixtures are essential sources of nutrients for herbivores, which can be consumed directly as fresh pastures and preserved as silage and hay. Pastures can be a source of toxic or endocrine-disrupting secondary metabolites originated from some plants, fungi, algae, bacteria and lichens residing in the pasture, which can induce a wide range of animal disorders [1,2,3]. Among these metabolites, mycotoxins, low molecular weight molecules produced by endophytic and epiphytic fungi, are one of the most relevant groups of metabolites due to their high incidence and their negative effects. Even though ruminants are more resistant to mycotoxins than monogastrics, metabolic and dietary particularities of high producing animals seem to reduce the rumen’s detoxifying ability, thereby increasing the risk of subclinical and clinical health disorders, impairing fertility and affecting productivity [6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call