Abstract

Animal feed (including forage and silage) can be contaminated with mycotoxins. Here, 200 maize silage samples from around China were collected in 2019 and analyzed for regulated mycotoxins, masked mycotoxins (deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, and deoxynivalenol-3-glucoside), and emerging mycotoxins (beauvericin, enniatins, moniliformin, and alternariol). Deoxynivalenol and zearalenone were detected in 99.5% and 79.5% of the samples, respectively. Other regulated mycotoxins were detected in fewer samples. The highest deoxynivalenol and zearalenone concentrations were 3600 and 830 μg/kg, respectively. The most commonly detected masked mycotoxin was 15-acetyldeoxynivalenol, which was detected in 68.5% of the samples and had median and maximum concentrations of 61.3 and 410 μg/kg, respectively. The emerging mycotoxins beauvericin, alternariol, enniatin A, enniatin B1, and moniliformin were detected in 99.5%, 85%, 80.5%, 72.5%, and 44.5%, respectively, of the samples but at low concentrations (medians <25 μg/kg). The samples tended to contain multiple mycotoxins, e.g., the correlation coefficients for the relationships between the concentrations of beauvericin and deoxynivalenol, deoxynivalenol and zearalenone, and zearalenone and beauvericin were 1.0, 0.995, and 0.995, respectively. The results indicated that there needs to be more awareness of the presence of one or more masked and emerging mycotoxins in maize silage in China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.