Abstract
BackgroundDeoxynivalenol (DON) is a mycotoxin produced by Fusarium species in the field, commonly found in cereal grains, which negatively affects performances and health of animals. Mycotoxin binders are supposed to reduce the toxicity of mycotoxins.MethodThe effect of a mycotoxin binder (containing acid-activated bentonite, clinoptilolite, yeast cell walls and organic acids) on growth performance and gut health was studied. Hundred and twenty weaning piglets were allocated to 4 treatments, with 5 pens of 6 piglets each, arranged in a 2 × 2 factorial design: control diet; control diet with 1 kg/t binder; control diet with DON; and control diet with DON and 1 kg/t binder. From d0–14, the diet of DON-challenged groups was artificially contaminated with a mixture of DON (2.6 mg/kg), 3-acetyl-deoxynivalenol (0.1 mg/kg) and 15-acetyl-deoxynivalenol (0.3 mg/kg), after which the total contamination level was reduced to 1 mg/kg, until d37. On d14, one pig from each pen was euthanized and distal small intestinal mucosa samples were collected for the assessment of intestinal permeability, and gene expression of tight junction proteins, toll-like receptor 4, inflammatory cytokines and intestinal alkaline phosphatase.ResultsAfter 37 d, there were no differences in growth performance between control and DON-challenged groups (P > 0.05). Nevertheless, groups that received diets with binder had a significantly higher average daily gain (ADG) and average daily feed intake (ADFI) for the first 14 d as well as for the whole period, compared to groups without binder (P ≤ 0.05). Groups with binder in the diet also exhibited lower expression of toll-like receptor 4 in distal small intestinal mucosa at d14, compared to groups without binder (P ≤ 0.05). Interestingly, comparing the two DON treatments, piglets fed DON and binder had significantly higher ADFI and ADG compared to those with only DON for the first 14-d (P ≤ 0.05). Addition of binder to DON contaminated diets, also down-regulated the gene expression of toll-like receptor 4 (P ≤ 0.05) and increased mRNA level zona occludens 1 (P ≤ 0.10) as compared to DON.ConclusionsThe present data provide evidence that the binder improves growth rate in piglets associated with reduction of toll-like receptor-4 and increase of tight junction protein gene expression. However, the current study does not allow to assess whether the effects of the binder are mediated by alterations in the toxicokinetics of the mycotoxin.
Highlights
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium species in the field, commonly found in cereal grains, which negatively affects performances and health of animals
The present data provide evidence that the binder improves growth rate in piglets associated with reduction of toll-like receptor-4 and increase of tight junction protein gene expression
The current study does not allow to assess whether the effects of the binder are mediated by alterations in the toxicokinetics of the mycotoxin
Summary
Animals and dietary treatments An animal feeding experiment in a 2 × 2 factorial design with either or not addition of DON, and either or not addition of binder to the feed was performed. A total of 120 weaning (24 d of suckling period) piglets with an average weight of 7.3 kg were used in this study. They were provided with water and feed ad libitum throughout the experiment. The mycotoxin binder was a blend of indigestible adsorbents that bind mycotoxins in the GIT (Free-Tox, Nutrex NV, Belgium). It contains acid-activated bentonite, clinoptilolite, yeast cell walls and organic acids. Results showed that the medium contained 240 mg/kg total DON metabolites (87.5% DON, 2.7% 3A–DON and 9.8% 15A–DON). It was further reduced to 1 mg/kg for the starter period (from d 14 until d 37) as model for chronic exposure
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.