Abstract

Samples of rainbow trout feed were analyzed with the aim to determine the mycobiota composition and the co-occurrence of mycotoxins. A total of 28 samples of finished rainbow trout feed from hatcheries in the provinces of Río Negro and Neuquén, Argentina, were studied. Fungal counts were obtained on three culture media in the ranges of <10 to 4.2 × 104 CFU/g on Dichloran Rose Bengal Chloramphenicol Agar (DRBC), <10 to 5.1 × 104 CFU/g on Dichloran Chloramphenicol Peptone Agar (DCPA) and <10 to 3.6 × 104 CFU/g on Dichloran 18% Glycerol Agar (DG18). The most frequent mycotoxigenic fungi were Eurotium (frequency (Fr) 25.0%), followed by Penicillium (Fr 21.4%) and Aspergillus (Fr 3.6%). The most prevalent mycotoxigenic species were E. repens (Fr 21.4%) and E. rubrum (Fr 14.3%). All samples were contaminated with mycotoxins: 64% samples were contaminated with T-2 toxin (median 70.08 ppb), 50% samples with zearalenone (median 87.97 ppb) and aflatoxins (median 2.82 ppb), 25% with ochratoxin A (median 5.26 ppb) and 3.57% samples with deoxynivalenol (median 230 ppb). Eight samples had a fumonisins contamination level below the limit of detection. Co-occurrence of six mycotoxins was determined in 7% of the samples.

Highlights

  • Rainbow trout (Oncorhynchus mykiss) production has been growing exponentially for the last 50 years in Europe and Chile, the latter being the largest producer [1]

  • Xerophilic fungal counts were in the range

  • Average and median were similar between all culture media tested (103 CFU/g and 102 CFU/g, respectively)

Read more

Summary

Introduction

Rainbow trout (Oncorhynchus mykiss) production has been growing exponentially for the last 50 years in Europe and Chile, the latter being the largest producer [1]. Trout products for human consumption are commercially available as fresh, filleted, smoked, canned, whole and frozen, among others [1,3], for restaurants, supermarkets or consumers [3]. Fish and seafood are present in many dietary guidelines, since their consumption is known to have positive health effects [4,5,6]. Current trout production is exclusively based on commercial feed [7]. As a consequence, this general practice can lead to increased cereal mycotoxin concentrations in fish feed [8]. If mycotoxins are carried over into the meat and eggs of the farmed fish, the contaminated feed may pose an additional health risk to the consumers [12]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call