Abstract
Chitinolytic activity and antibiosis are gaining prominence in various biotechnological fields. Dead fungal biomass (DFB) was used as a mycostimulator of chitinase production and antibiosis by Aspergillus fumigatus. The presence of DFB stimulated the synthesis of various secondary metabolites by A. fumigatus that were detected by gas chromatography-mass spectrometry analysis such as 6,8-Di-C-á-glucosylluteolin; bistrimethylsilyl N-acetyl eicosasphinga-4,11-dienine; curan-17-oic acid, 19,20-dihydroxy-, methyl ester, (19S)-; spiro[5à-androstane-3,2′-thiazolidine; retinal; Androsta-1,4-dien-3-one; Panaxydol; Costunolide; Cyclo-(glycyl-L-tyrosyl); and 2-amino ethane thiolsulfuric acid. Chitinase activity was 42.9 Units/mL with the presence DFB, where it was 10.3 Units/mL without DFB. The maximum activity of chitinase was observed at 1.5 g of dead fungal biomass, at 4 h, 50 °C and pH 6. Thermodynamic properties showed ∆H° and ∆S° values of 126 KJ mol-1 and 432 J mol-1 K-1, respectively, indicating an endothermic reaction up to 60 °C. Deviation in ∆G° values confirmed that the reaction at 10 to 20 °C is a nonspontaneous reaction, and at 30 to 60 °C the reaction has a spontaneous nature. DFB encouraged the antimicrobial activity against Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, Aspergillus fumigatus, Mucor circinelloides, and Candida albicans with 2.3, 2.2, 2.8, 0.8, 0.7, and 2.2 mm inhibition zones, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.