Abstract

A greenhouse experiment was designed to determine the mycorrhizal symbiotic effectiveness in native mycorrhizal fungi population associated with different soil coverage in the Cesar department. The experimental design was completely randomized with nine treatments and six variations per treatment, 54 experimental units in all. Treatments consisted of combination of soils which contained a substrate from different mulches or soil coal mining (soil-coverage): natural forest (NF), transition soil (TS), a horizon (AH), mining waste (MW), palm (PM), pastures (PT), undisturbed soil (US), with its respective controls, positive Glomus mosseae (GM) and negative sterile substrate without inoculum (WI). The variables studied were foliar P content was monitored as a function of time; at harvest, shoot dry weight, shoot P content, and mycorrhizal colonization represented the time increments. The higher contents of P foliar obtained in the sampling period were for the positive control (GM) showing significant differences between soil-coverage, except for ST and US assessed on the sampling day 74. Shoot dry weight had a significant difference in GM, NF, TS, AH, PM and US treatments compared to the remaining three. Treatments with the most weight were US and GM (positive control). Mining waste (MW), PT and WI (negative control) had the lowest values in mass. As expected, shoot P content in the GM samples was higher and had significant differences compared to the other treatments. Soil-coverage closest to the positive control were NF, US, and TS. All assessed treatments showed mycorrhizal colonization except the negative control (WI). Three soil-coverages PM, PT, and US were similar to the positive control, with colonization percentages of 29, 24 and 48 respectively. In conclusion, this kind of research suggests that symbiotic effectiveness experiments are an excellent tool for the selection of native arbuscular mycorrhizal fungi. Besides, and as evidenced, soil-coverage NIT was statistically similar to the positive control (GM), which makes it a candidate for mass crude inoculum production for restoration purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.