Abstract

It is well known from laboratory studies that a single mycorrhizal fungal isolate can colonize different plant species, form interplant linkages, and provide a conduit for interplant transfer of isotopic carbon, nitrogen, phosphorus, or water. There is increasing laboratory and field evidence that the magnitude and direction of transfer is influenced by physiological source–sink gradients between plants. There is also evidence that mycorrhizal fungi play a role in regulating transfer through their own source–sink patterns, frequency of links, and mycorrhizal dependency. Although it is plausible that connections are extensive in nature, field studies have been hampered by our inability to observe them in situ and by belowground complexity. In future, isotopic tracers, morphological observations, microsatellite techniques, and fluorescent dyes will be useful in the study of networks in nature. Mycorrhizal networks have the potential to influence patterns of seedling establishment, interplant competition, plant diversity, and plant community dynamics, but studies in this area are just beginning. Future plant community studies would benefit from concurrent experimental use of fungal network controls, isotopic labeling, direct observation of interplant linkages, and long-term observation in the field. In this paper, we review recent literature on mycorrhizal networks and interplant carbon transfer, suggest future research directions, and highlight promising scientific approaches.Key words: common mycorrhizal network, carbon transfer, source–sink, establishment, competition, diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.