Abstract

Recent studies have revealed effects of various tree species on soil physical and chemical properties. However, effects of various tree species on composition and activity of soil microbiota and the relevant controls remain poorly understood. We evaluated the influence of tree species associated with two different mycorrhizal types, ectomycorrhiza (EcM) and arbuscular mycorrhiza (AM), on growth, biomass and metabolic activity of soil fungal and bacterial communities using common garden tree species experiments throughout Denmark. The soil microbial communities differed between six European tree species as well as between EcM (beech, lime, oak and spruce) and AM (ash and maple) tree species. The EcM tree species had higher fungal biomass, fungal growth and bacterial biomass, while AM species showed higher bacterial growth. The results indicated that microbial community composition and functioning differed between groups of tree species with distinct litter qualities that generate soil C/N ratio and soil pH differences. The mycorrhizal association only partly explained litter quality and soil microbial species differences since lime was more similar to AM tree species. In addition, our results indicated that tree species-mediated soil pH and C/N ratio were the most important variables shaping microbial communities with a positive effect on bacterial and a negative effect on fungal growth rates. The results suggest that tree species-mediated microbial community composition and activity may be important drivers of the different vertical soil C distribution previously observed in AM and EcM tree species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.