Abstract

This paper presents soil biological data from a study on the functioning of three soil-plant systems on a Gray Luvisol in Cryoboreal Subhumid central Alberta. The systems were (1) an agroecological 8-year rotation, (2) a continuous grain system, both established in 1981, and (3) a classical Breton 5-year rotation established in 1930. The objectives were to (1) determine whether changes in vesicular-arbuscular mycorrhizae (VAM) populations occurred in soil under these cropping systems, (2) discover whether these cropping systems and/or VAM infection influenced the incidence of common root rot (Bipolaris sorokiniana), and (3) use nutrient translocation indices to test the hypothesis that soil quality influences non-specific physiological conditions in barley (Hordeum vulgare L.). VAM fungal propagules in soil samples and VAM infection under controlled conditions were significantly affected by the cropping system. VAM infection accounted for more than 85% of the variability in grain yield, plant biomass yield, and plant uptake of K, S, Ca, Fe, and Zn under controlled conditions. Backward-elimination regression analyses showed that under these conditions of high available P, plant P uptake was governed by the quantity of extractable P in the soil (r2=0.82); the VAM infection contributed practically nothing when combined with available P (R2=0.84). Neither VAM infection nor the cropping system were related to the B. sorokiniana infection in the barley. The growth of B. sorokiniana was equal, and its sporulation superior, when grown on residues of the non-host fababean (Vicia faba L.), compared with growth on residues of barley. Higher translocation of plant nutrients to the grain in the agroecological compared with the continuous grain treatments suggested that VAM and/or the soil history affected plant physiology, possible through hormonal effects. Superior barley yields in the agroecological compared with the continuous grain treatments were partly due to increased VAM colonization, greater nutrient accumulation and translocation to the grain, but not to a reduced disease incidence. These results demonstrate the benefits of a holistic systems approach while studying biological interactions involving plants and groups of soil microorganisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.