Abstract

Arbuscular mycorrhizal fungi (AMF) reduce disease incidence of host plants through the competition of carbon sources and direct inhibition of pathogens, as well as through induction of biochemical and molecular responses. However, it is not known whether AMF enhance the resistance to Phytophthora parasitica-induced root rot in citrus and what the underlying mechanisms are. This study was carried out to analyze roles of Funneliformis mosseae (a mycorrhizal fungus) in plant defence responses of Poncirus trifoliata infected by P. parasitica. A week after the pathogen infection, mycorrhizal seedlings possessed higher expression of root mitogen-activated protein kinase 3 (PtMAPK3) regardless of P. parasitica infection. F. mosseae induced higher root salicylic acid (SA) concentrations, accompanied with up-regulation of SA synthesis genes (PtPAL1 and PtEPS1), regardless of being infected with P. parasitica or not. Jasmonic acid (JA) synthesis genes were down-regulated by mycorrhization in the absence of P. parasitica and up-regulated (except for PtAOC) by mycorrhization under P. parasitica infection. Moreover, F. mosseae stimulated higher expression of pathogenesis-related protein gene 1 (PtPR1), PtPR4, and PtPR5, especially under P. parasitica infection. F. mosseae inoculation increased levels of root lignin, calmodulin, and total soluble phenol and activities of root chitinase, phenylalanine ammonialyase, and β-1,3-glucanase, and decreased concentrations of root nitric oxide with or without P. parasitica infection. These results implied that F. mosseae elicited MAPKs cascades as well as SA- and calmodulin-mediated signal pathways to activate disease-defence genes, proteins, and compounds to early-warn P. parasitica infection for enhancing tolerance of root rot in trifoliate orange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.