Abstract

Low available phosphorus (P) is a serious constraint for crop production in acidic tropical soils. Economical yields in these environments require application of large amounts of costly nitrogen (N) and P fertilizers. Although phosphate rock (PR) has been proposed as a less expensive P source, the slow P release to the soil limits its use for annual crops. The objective of this work was to examine the effect of inoculating a nonsterile acidic soil with vesicular arbuscular mycorrhizal (VAM) Gigaspora margarita on PR dissolution and P uptake by aluminum (Al)–tolerant maize inbreds. Three maize inbreds from CIMMYT, at Cali, Colombia, ranked as Al‐tolerant and one local breed ranked as Al‐susceptible were seeded in 4‐kg pots filled with a soil of pH 4.1 and 2.5 mg kg−1 available P. Inoculants (Gigaspora margarita and indigenous VAM), P fertilizer (Riecito phosphate rock and triple superphosphate), and the four inbreds were arrainged in a factorial design (2 × 2 × 4) with four replications. Plants were harvested 35 days after seeding, and P was determined in shoots. Four 2.5‐cm‐diameter soil cores were obtained from each pot to determine root length (two cores), root colonization (one core), and available P (one core). The inoculation with Gigaspora margarita caused a reduction in root length but better root colonization, 55% increase in P uptake, and 27% increase in shoot growth. When PR was used as fertilizer, plant growth was reduced in both roots and shoots. However, when PR was used in the presence of Gigaspora margarita, inbreds had 13% longer roots and shoot growth was the same as shoots fertilized with triple superphosphate. Our data suggest that inbreds exhibit different abilities to acquire P from PR under the influence of Gigaspora margarita fungi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.