Abstract

Mycoplasma synoviae (MS) infection causes infectious synovitis and arthritis with hyperplasia of synovial cells in the chicken joint. However, its mechanism is unknown. We used primary chicken synovial fibroblast (CSF) as the research object to study the role of MS in the proliferation of MS-infected CSF and determine the mechanisms involved. Using integrated transcriptomic and proteomic analyses of the interaction between CSF and MS, we screened a proliferation-regulated factor, serum amyloid A (SAA), that may regulate proliferation of MS-infected CSF. SAA appears to be associated with MS-induced CSF proliferation. To study the role of SAA in MS-induced CSF proliferation, a eukaryotic expression vector overexpressing SAA and a small interfering RNA (siRNA) targeting Saa were constructed to manipulate the expression of SAA. Cell proliferation and apoptosis were detected via cell counting kit-8 (CCK-8), 5-Ethynyl-2′-deoxyuridine (EdU), or terminal deoxyribonucleotidyl transferase-mediated dUTP nick-dnd labeling (TUNEL) assays, respectively. Western blot analysis was used to examine the protein expression level of SAA, cyclin E1, and cyclin-dependent kinase 2 (CDK2). In vitro, MS significantly promoted the proliferation of CSF and increased the production of SAA. Overexpression of SAA accelerated the proliferative ability of CSF, whereas knockdown of SAA depressed the proliferative ability of CSF. A TUNEL assay indicated that MS did not induce apoptosis. Silencing of SAA suppressed the expression of cyclin E1 and CDK2. These results suggest that MS may upregulate the expression of SAA, accelerate the cell cycle, and promote proliferation of CSF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call