Abstract

Trastuzumab has been successfully used as a first-line therapy specific for HER2-overexressing breast cancer patients. However, despite the effectiveness of trastuzumab, the occurrence of inherent and acquired resistance remains as the main challenge of the therapy. Thus, this has motivated efforts toward finding new therapeutic strategies including combining trastuzumab with other drugs to enhance its therapeutic efficacy. In that line, we investigated the capability of mycophenolic acid (MPA), an inhibitor of de novo guanine nucleotide synthesis with potential anti-cancer activity, on improving the response to trastuzumab among SKBR3 cells as well as trastuzumab resistant SKBR3-TR cells. Our data indicated that irrespective to trastuzumab sensitivity of cells, MPA effectively inhibited cell growth through inducing adipocyte-like cell differentiation as well as blocking cell cycle progression at G1 phase along with augmentation of p27kip expression level. Furthermore, combined treatment with trastuzumab and MPA was more potent in cell growth inhibition, cell cycle arrest and apoptosis induction, as evident by flow cytometric analyses and caspase-3 production, in both trastuzumab sensitive and resistant SKBR3 cells. Besides, western blot analysis showed that elevated apoptosis induction in both cell groups was associated with attenuation in phosphorylation of some key elements of HER2 signaling pathway including AKT, ERK, STAT3 and consequently augmentation in FOXO1 expression level in response to combination of trastuzumab and MPA. These data suggest that manipulation of intracellular GTP level by MPA and consequent molecular perturbation in some of the cell survival and pro-apoptotic relevant signaling pathways might provide an alternative clinical strategy for chemosensitization of resistant breast cancer cells to anti- HER2 therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call