Abstract

Background: Interleukin (IL)-18 is a pro-inflammatory cytokine that has important functions in host defense. The maturation and secretion of IL-18 has been shown to be regulated by the NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. Mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), in association with lipopolysaccharide (LPS), is able to promote the secretion of IL-18, but the mechanism remains unknown. This study aims to explore the mechanism by which MPA synergizes with LPS to induced IL-18 release.Methods: THP-1 cells were stimulated with LPS and MPA and treated with or without the inhibitors of caspase-1, Ac-YVAD-cmk or KCl; IL-18 in the supernatants was measured by ELISA. The intracellular protein levels of NF-κB p-p65, pro-IL-18, NLRP3, and cleaved caspase-1(p20) were measured by Western blot.Results: We found that MPA alone failed to induce IL-18, whereas MPA enhanced LPS-mediated IL-18 release. MPA did not affect the intracellular protein levels of NF-κB p-p65 or pro-IL-18 but activated the NLRP3 inflammasome. Ac-YVAD-cmk or increasing extracellular K+ blocked the activation of caspase-1 and attenuated the release of IL-18.Conclusions: Taken together, MPA synergized with LPS to induce the release of IL-18 via activating the NLRP3 inflammasome and increasing the degradation of pro-IL-18, rather than by enhancing the production of pro-IL-18.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call