Abstract

The phenyl glycoside myconoside, extracted from Balkan endemic Haberlea rhodopensis, has a positive effect on human health, but the exact molecular mechanism of its action is still unknown. The cell membrane and its associated junctional complex are the first targets of exogenous compound action. We aimed to study the effect of myconoside on membrane organization and cytoskeleton components involved in the maintenance of cell polarity in the MDCKII cell line. By fluorescent spectroscopy and microscopy, we found that at low concentrations, myconoside increases the cell viability by enhancing membrane lipid order and adherent junctions. The opposite effect is observed in high myconoside doses. We hypothesized that the cell morphological and physicochemical changes of the analyzed cell compartments are directly related to cell viability and cell apical-basal polarity. Our finding contributes to a better understanding of the beneficial application of phytochemical myconoside in pharmacology and medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call