Abstract

The current study aimed to isolate biodegradable soil fungi capable of metabolizing diazinon. The collected soil samples were investigated for diazinon pollution to detect the pesticide level in the polluted soil samples. Food poisoning techniques were utilized to preliminary investigate the biodegradation efficiency of the isolated fungal strains to diazinon pesticide using solid and liquid medium and also to detect their tolerance to different concentrations. GC-MS analysis of control and treated flasks were achieved to determine the diazinon residues for confirmation of the biodegradation efficiency. The total diazinon residues in the collected soil samples was found to be 0.106 mg/kg. Out of thirteen fungal strains isolated form diazinon polluted soils, six strains were potentially active in diazinon biodegradation. Food poisoning technique showed that A. niger, B. antennata, F. graminearum, P. digitatum, R. stolonifer and T. viride strains recorded fungal growth diameters of 65.2 ± 0.18, 57.5 ± 0.41, 47.2 ± 0.36, 56.5 ± 0.27, 85.0 ± 0.01, 85.0 ± 0.06 mm respectively in the treated group which were non significantly different compared to that of control (P > 0.05), indicating the high efficiency of these strains in diazinon degradation compared to the other isolated strains. GC-MS analysis revealed that B. antennata was the most efficient strain in diazinon degradation recording 32.24 ± 0.15 ppm concentration after 10 days incubation. Linear regression analysis confirmed that B. antennata was the most effective biodegradable strain recording the highest diazinon dissipation (83.88%) with the lowest T1/2 value of 5.96 days while T. viride, A. niger, R. stolonifer and F. graminearum exhibited a high biodegradable activities reducing diazinon to 80.26%, 78.22%, 77.36% and 75.43% respectively after 10 days incubation. In conclusion, these tolerant fungi could be considered as promising, eco-friendly and biodegradable fungi for the efficient and potential removal of hazardous diazinon from polluted soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.