Abstract
Although overlooked in post‐mining rehabilitation, soil mycobiota constitute an important fraction of biodiversity, playing pivotal functions in soil that contribute to the revegetation process and soil stability in post‐mining environments. Evaluating the rehabilitation progress requires comparing it, when possible, with a reference site, preferably identical or similar to pre‐mining characteristics. Here, we investigated the mycobiota from a reference site, comparable to pre‐mining characteristics, and a post‐mining revegetated site 10 years after decommissioning and revegetation, during rainy and dry seasons. We combined the metabarcoding approach with functional traits from fungal operational taxonomic units and complemented our results with traditional techniques for arbuscular mycorrhizal fungi (AMF) surveys using spore morphology and mycorrhizal colonization. Our findings demonstrated that the composition of the fungal community exhibited more differences between the two sites studied than the intra‐annual periods assessed, even though the sites were under the same climatic conditions, spatially nearby, and without barriers between them. The mycobiota composition displayed differences between sites from phylum to genus levels. However, the predictive trophic modes (pathotrophs, saprotrophs, and symbionts) were equivalent in the two sites. All roots of plants assessed had AMF colonization, and AMF spore densities were similar. While many fungal taxa were present at both sites, the spatial connectivity between both sites was insufficient for equivalence of fungal community structure and composition. Differences in chemical and physical soil characteristics may have shaped the fungal communities. This study highlights the need to comprehend the fungal community from mining environments, considering concepts of landscape connectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.