Abstract

The genetic and biochemical aspects of the essential Mycobacterium tuberculosis MtrAB two-component regulatory signal transduction (2CRS) system have not been extensively investigated. We show by bacterial two-hybrid assay that the response regulator (RR) MtrA and the sensor kinase MtrB interact. We further demonstrate that divalent metal ions [Mg(2+), Ca(2+) or both] promote MtrB kinase autophosphorylation activity, but only Mg(2+) promotes phosphotransfer to MtrA. Replacement of the conserved aspartic acid residues at positions 13 and 56 with alanine (D13A), glutamine (D56E) or asparagine (D56N) prevented MtrA phosphorylation, indicating that these residues are important for phosphorylation. The MtrA D56E and MtrA D13A proteins bound to the promoter of fbpB, the gene encoding antigen 85B protein, efficiently in the absence of phosphorylation, whereas MtrA D56N did not. We also show that M. tuberculosis mtrA merodiploids overproducing MtrA D13A, unlike cells overproducing wild-type MtrA, grow poorly in nutrient broth and show reduced expression of fbpB. These latter findings are reminiscent of a phenotype associated with MtrA overproduction during intramacrophage growth. Our results suggest that MtrA D13A behaves like a constitutively active response regulator and that further characterization of mtrA merodiploid strains will provide valuable clues to the MtrAB system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.