Abstract
MenJ, a flavoprotein oxidoreductase, is responsible for the saturation of the β-isoprene unit of mycobacterial menaquinone, resulting in the conversion of menaquinone with nine isoprene units (MK-9) to menaquinone with nine isoprene units where the double bond in the second unit is reduced [MK-9(II-H2)]. The hydrogenation of MK-9 increases the efficiency of the mycobacterial electron transport system, whereas the deletion of MenJ results in decreased survival of the bacteria inside J774A.1 macrophage-like cells but is not required for growth in culture. Thus, it was suggested that MenJ may represent a contextual drug target in M. tuberculosis, that is, a drug target that is valid only in the context of an infected macrophage. However, it was unclear if the conversion of MK-9 to MK-9(II-H2) or the MenJ protein itself was responsible for bacterial survival. In order to resolve this issue, a plasmid expressing folded, full-length, inactive MenJ was engineered. Primary sequence analysis data revealed that MenJ shares conserved FAD binding, NADH binding, and catalytic and C-terminal motifs with archaeal geranylgeranyl reductases. A MenJ mutant deficient in any one of these motifs is devoid of reductase activity. Therefore, point mutations of highly conserved amino acids in the conserved motifs were generated and the recombinant proteins were monitored for conformational changes by circular dichroism and oxidoreductase activity. The mutational analysis indicates that amino acids tryptophan 215 (W215) and cysteine 46 (C46) of M. tuberculosis MenJ, conserved in known archaeal geranylgeranyl reductases and putative menaquinone saturases, are essential to the hydrogenation of MK-9. The mutation of either C46 to serine (C46S) or W215 to leucine (W215L) in MenJ completely abolishes the catalytic activity in vitro, and menJ knockout strains of M. tuberculosis expressing either the C46S or W215L mutant protein are unable to convert MK-9 to MK-9(II-H2) but survive inside the J774A.1 cells. Thus, surprisingly, the survival of M. tuberculosis in J774A.1 cells is dependent on the expression of MenJ rather than its oxidoreductase activity, the conversion of MK-9 to MK-9(II-H2) as previously hypothesized. Overall, the current data suggest that MenJ is a moonlighting protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.