Abstract

Tuberculosis caused by Mycobacterium tuberculosis (M. tuberculosis) infection remains a serious public threat despite decades of creative endeavors. There are few reports on the roles of M. tuberculosis enzymes involved in cell envelope biosynthesis in pathogen survival and persistence. M. tuberculosis Rv3717 encodes N-acetylmuramoyl-l-alanine amidase, a cell-wall hydrolase that hydrolyzes the bond between N-acetylmuramic acid and l-alanine in cell-wall peptidoglycan. In this paper, we demonstrated the Rv3717 promoted the survival of Mycolicibacterium smegmatis(M. smegmatis) within macrophages. More importantly, we demonstrated that this effect is because MS_Rv3717 reduces the release of host pro-inflammatory cytokines such as IL-1β, IL-6, IL-12 p40, TNF-α, and increased transcription of anti-inflammatory cytokine IL-10. At the same time, MS_Rv3717 inhibits apoptosis by inhibiting the activation of Caspase-3/9, reducing the host's elimination of M. smegmatis. Finally, from a bacterial perspective, we found Rv3717 decreased the survival of M. smegmatis under stresses such as SDS and low pH. This is the first report of the involvement of Mycobacterium cell envelope biosynthetic enzyme in host-pathogen interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call