Abstract

Macrophages play a pivotal role in controlling Mycobacterium infection, and the pathogen thrives in the event of immune evasion and immunosuppression of macrophages. Mammalian cell entry proteins (Mce) are required for Mycobacterium tuberculosis (M. tb) growth and the host cell's initial phagocytosis and cytokine response. Mce2D protein is one of a family of proteins that infect M. tb; however, the function and mechanism of action remain unclear. In this study, we constructed the Mce2D knockout strain using Mycobacterium smegmatis to study the function of Mce2D in the infection of macrophages. The results indicated that compared to the knockout strain, the release of proinflammatory cytokines (TNF-α and IL-1β) reduced when WT strain infected the macrophages. Moreover, Mce2D boosted the metabolism of oxidized fatty acids, increased the energy supply of TCA, and lowered the glycolysis of glucose in macrophages after bacterial infection, all of which prevented the polarization of macrophages to M1, which was driven by the fact that Mce2D blocked ERK2 phosphorylation by interacting with ERK2 through its DEF motif. This, in turn, promoted nuclear translocation of HIF-1α, allowing signal accumulation, which increased the HIF-1α transcription levels. Finally, the mouse infection experiment showed that Mce2D caused blockage of M1 polarization of alveolar macrophages, resulting in reduced bactericidal activity and antigen presentation, weakening Th1 cell-mediated immune response and helping bacteria escape the immune system. Our results reveal that Mce2D causes immune escape by blocking M1 polarization in macrophages, providing potential targets for the rational design of therapies against M. tb infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call