Abstract
Branched-chain amino acids (BCAAs) leucine, isoleucine and valine biosynthetic pathways have been reported from plants, fungi and bacteria including Mycobacterium tuberculosis (Mtb) but are absent in animals. This makes interventions with BCAAs biosynthesis an attractive proposition for antimycobacterial drug discovery. In the present study, Mycobacterium tuberculosis H37Ra (Mtb-Ra) ketol-acid reductoisomerase encoding ORF MRA_3031 was studied to establish its role in Mtb-Ra growth and survival. Recombinant knockdown (KD) and complemented (KDC) strains along with wild-type (WT) Mtb-Ra were studied under in-vitro and ex-vivo conditions. KD was defective for survival inside macrophages and showed time dependent decrease in its colony forming unit (CFU) counts, while, WT and KDC showed time dependent increase in CFUs, after macrophage infection. Also, KD showed reduced ability to form persister cells, had altered membrane permeability against ethidium bromide and nile red dyes, and had reduced biofilm maturation, compared to WT and KDC. The in-vivo studies showed that KD infected mice had lower CFU counts in lungs, compared to WT. In summary Mtb shows survival deficit in macrophages and in mice after ketol-acid reductoisomerase down-regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.