Abstract

Understanding Mycobacterium tuberculosis (Mtb) intra-host evolution of drug resistance is important for successful drug-resistant tuberculosis (DR-TB) treatment and control strategies. This study aimed to characterise the acquisition of genetic mutations and low-frequency variants associated with treatment-emergent Mtb drug resistance in longitudinally profiled clinical isolates from patients who experienced DR-TB treatment failure. We performed deep Whole Genome Sequencing on 23 clinical isolates obtained longitudinally across nine timepoints from five patients who experienced DR-TB treatment failure enrolled in the CAPRISA 020 InDEX study. The minimum inhibitory concentrations (MICs) were established on the BACTEC™ MGIT 960™ instrument on 15/23 longitudinal clinical isolates for eight anti-TB drugs (rifampicin, isoniazid, ethambutol, levofloxacin, moxifloxacin, linezolid, clofazimine, bedaquiline). In total, 22 resistance associated mutations/variants were detected. We observed four treatment-emergent mutations in two out of the five patients. Emerging resistance to the fluoroquinolones was associated with 16- and 64-fold elevated levofloxacin (2-8 mg/L) and moxifloxacin (1-2 mg/L) MICs, respectively, resulting from the D94G/N and A90V variants in the gyrA gene. We identified two novel mutations associated with elevated bedaquiline MICs (>66-fold): an emerging frameshift variant (D165) on the Rv0678 gene and R409Q variant on the Rv1979c gene present from baseline. Genotypic and phenotypic resistance to the fluoroquinolones and bedaquiline was acquired in two out of five patients who experienced DR-TB treatment failure. Deep sequencing of multiple longitudinal clinical isolates for resistance-associated mutations coupled with phenotypic MIC testing confirmed intra-host Mtb evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call