Abstract

BackgroundEmergence of drug resistant varieties of tuberculosis is posing a major threat to global tuberculosis eradication programmes. Although several approaches have been explored to counter resistance, there has been limited success due to a lack of understanding of how resistance emerges in bacteria upon drug treatment. A systems level analysis of the proteins involved is essential to gain insights into the routes required for emergence of drug resistance.ResultsWe derive a genome-scale protein-protein interaction network for Mycobacterium tuberculosis H37Rv from the STRING database, with proteins as nodes and interactions as edges. A set of proteins involved in both intrinsic and extrinsic drug resistance mechanisms are identified from literature. We then compute shortest paths from different drug targets to the set of resistance proteins in the protein-protein interactome, to derive a sub-network relevant to study emergence of drug resistance. The shortest paths are then scored and ranked based on a new scheme that considers (a) drug-induced gene upregulation data, from microarray experiments reported in literature, for the individual nodes and (b) edge-hubness, a network parameter which signifies centrality of a given edge in the network. High-scoring paths identified from this analysis indicate most plausible pathways for the emergence of drug resistance. Different targets appear to have different propensities for four drug resistance mechanisms. A new concept of 'co-targets' has been proposed to counter drug resistance, co-targets being defined as protein(s) that need to be simultaneously inhibited along with the intended target(s), to check emergence of resistance to a given drug.ConclusionThe study leads to the identification of possible pathways for drug resistance, providing novel insights into the problem of resistance. Knowledge of important proteins in such pathways enables identification of appropriate 'co-targets', best examples being RecA, Rv0823c, Rv0892 and DnaE1, for drugs targeting the mycolic acid pathway. Insights obtained about the propensity of a drug to trigger resistance will be useful both for more careful identification of drug targets as well as to identify target-co-target pairs, both implementable in early stages of drug discovery itself. This approach is also inherently generic, likely to significantly impact drug discovery.

Highlights

  • Emergence of drug resistant varieties of tuberculosis is posing a major threat to global tuberculosis eradication programmes

  • Interactions among proteins of M. tuberculosis, discerned from the STRING database, have been used to construct a protein-protein interactome, which enables a novel formulation of the problem of drug resistance and forms a first step towards countering drug resistance at the drug discovery stage itself

  • The questions addressed here are: (i) can we obtain insights into the possible routes through which information in the form of structural and biochemical signals can flow from the drug target(s) of a given drug to the molecular components of the resistance machinery, (ii) do different drugs follow different pathways of resistance, triggering different resistance mechanisms, (iii) do different drugs have different propensities for inducing resistance and (iv) lastly, can we design intelligent 'roadblocks' to prevent the emergence of drug resistance

Read more

Summary

Introduction

Emergence of drug resistant varieties of tuberculosis is posing a major threat to global tuberculosis eradication programmes. Several different strategies are being explored to counter the problem of resistance, which include rotation of antibiotic combinations, enhanced medical supervision to ensure patient compliance, identification of new targets that may be less mutable, search for new chemical entities for known targets, use of virulence factors as targets and 'phenotypic conversion', which aims to inhibit the resistance mechanism employed by the bacterium [5]. While each of these may be very important measures, available statistics indicate that resistant forms are still on the rise, warranting more research in the area. In order to use this strategy effectively, it is at the outset, essential to understand the ways by which resistance can emerge upon exposure to a given drug

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call