Abstract

Rapid and precise detection of Mycobacterium tuberculosis (MTB) is paramount for effective management and control of tuberculosis. Clustered regularly interspaced short palindromic repeats (CRISPR) technology has emerged as a promising tool for pathogenic diagnosis owing to its specificity and adaptability. This systematic review and meta-analysis aimed to appraise the diagnostic accuracy of CRISPR-based techniques in identifying MTB. A meticulous search was conducted in Medline, Scopus, Embase, and ISI Web of Science to retrieve relevant studies, adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Quality was assessed using the Joanna Briggs Institute checklist. Data synthesis and analyses, including subgroup analyses, were performed with R v 4.3.1, examining variables like CRISPR variants, gene targets, pre-amplification techniques, and signal readout methods. From 389 identified studies, 14 met the inclusion criteria, encompassing 2175 MTB strains. The pooled sensitivity and specificity of CRISPR-based techniques were 0.93 (95% CI 0.85-0.99) and 0.97 (95% CI 0.94-0.99), respectively. The pooled diagnostic odds ratio was 273.4379 (95% CI 103.3311-723.5794), with an area under the curve of 0.97 for the summary receiver operating characteristic (SROC) curve, denoting excellent diagnostic accuracy. Subgroup analyses illustrated variations in diagnostic metrics based on factors like CRISPR variant utilized, target gene, and pre-amplification methods. For instance, CRISPR-Cas12 exhibited a sensitivity and specificity of 0.93 (95% CI 0.78-0.98) and 0.98 (95% CI 0.93-1), respectively. Moreover, this technology showed a sensitivity of 96% and specificity of 100% in detecting resistant MTB. CRISPR-based methods exhibit substantial diagnostic sensitivity and specificity for detecting MTB, with notable variances across different CRISPR variants and methodological approaches. Further studies must be conducted to optimize CRISPR's potential as a diagnostic tool for MTB in a variety of clinical and research settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.