Abstract

Multiple genes in Mycobacterium tuberculosis (Mtb) are regulated by copper including socAB (small orf induced by copper A and B), which is induced by copper and repressed by RicR (regulated in copper repressor). socA and socB encode hypothetical proteins of 61 and 54 amino acids, respectively. Here, we use biophysical and computational methods to evaluate the SocB structure. We find that SocB lacks evidence for secondary structure, with no thermal cooperative unfolding event, according to circular dichroism measurements. 2D NMR spectra similarly exhibit hallmarks of a disordered structural state, which is also supported by analyzing SocB diffusion. Altogether, these findings suggest that by itself SocB is intrinsically disordered. Interestingly, SocB interacts with a synthetic phospholipid bilayer and becomes helical, which suggests that it may be membrane-associated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.