Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a serious threat to global public health. Fluoroquinolones (FQs) are effective against M. tuberculosis; however, resistant strains have limited their efficacy. Mycobacteriumfluoroquinolone resistance protein A (MfpA) confers intrinsic resistance to FQs; however, its regulatory mechanisms remain largely unknown. Using M. smegmatis as a model, we investigated whether MfpC is necessary for FQ susceptibility. MfpC mutants were sensitive to moxifloxacin, indicating that MfpC is involved in FQ susceptibility. By testing the mfpC inactivation phenotype in different mutants and using mycobacterial protein fragment complementation, we demonstrated that the function of MfpC depends on its interactions with MfpB. Guanine nucleotide exchange assays and site-directed mutagenesis confirmed that MfpC acts as a guanine nucleotide exchange factor to regulate MfpB. We propose that MfpB influences MfpA at the translational level. In summary, we reveal the role of MfpC in regulating the function of MfpA in FQ resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.