Abstract

Autism is a heterogeneous group of life-long neurologic problems that begin in childhood. Success in efforts to understand and treat autism has been mostly elusive. The role of autoimmunity in autism has gained recognition both for associated systemic autoimmune disease and the presence of brain autoantibodies in autistic children and their family members. There is an acknowledged genetic susceptibility to autism – most notably allotypes of complement C4. C4 defects are associated with several autoimmune diseases and also confer susceptibility to mycobacterial infections. Mycobacterium avium ss. paratuberculosis (MAP) causes an enteric inflammatory disease in ruminant animals (Johne’s disease) and is the putative cause of the very similar Crohn’s disease in humans. Humans are widely exposed to MAP in food and water. MAP has been also linked to ulcerative colitis, irritable bowel syndrome, sarcoidosis, Blau syndrome, autoimmune (Type 1) diabetes, Hashimoto’s thyroiditis and multiple sclerosis. Environmental agents are thought to trigger autism in the genetically at risk. Molecular mimicry is the proposed mechanism by which MAP is thought to trigger autoantibodies. Autoantibodies to brain myelin basic protein (MBP) is a common feature of autism. This article considers the subset of autoimmunity-related autism patients and postulates that MAP, through molecular mimicry to its heat shock protein HSP65, triggers autism by stimulating antibodies that cross react with myelin basic protein (MBP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call