Abstract

Generation of reactive oxygen species and reactive nitrogen species in phagocytes is an important innate immune response mechanism to eliminate microbial pathogens. It is known that deoxynucleotides (dNTPs), the precursor nucleotides to DNA synthesis, are one group of the significant targets for these oxidants and incorporation of oxidized dNTPs into genomic DNA may cause mutations and even cell death. Here we show that the mycobacterial dNTP pyrophosphohydrolase MazG safeguards the bacilli genome by degrading 5-OH-dCTP, thereby, preventing it from incorporation into DNA. Deletion of the (d)NTP pyrophosphohydrolase-encoding mazG in mycobacteria leads to a mutator phenotype both under oxidative stress and in the stationary phase of growth, resulting in increased CG to TA mutations. Biochemical analyses demonstrate that mycobacterial MazG can efficiently hydrolyze 5-OH-dCTP, an oxidized nucleotide that induces CG to TA mutation upon incorporation by polymerase. Moreover, chemical genetic analyses show that direct incorporation of 5-OH-dCTP into mazG-null mutant strain of Mycobacterium smegmatis (Msm) leads to a dose-dependent mutagenesis phenotype, indicating that 5-OH-dCTP is a natural substrate of mycobacterial MazG. Furthermore, deletion of mazG in Mycobacterium tuberculosis (Mtb) leads to reduced survival in activated macrophages and in the spleen of infected mice. This study not only characterizes the mycobacterial MazG as a novel pyrimidine-specific housecleaning enzyme that prevents CG to TA mutation by degrading 5-OH-dCTP but also reveals a genome-safeguarding mechanism for survival of Mtb in vivo.

Highlights

  • Oxidative damage to DNA and the DNA precursors, deoxynucleotides is an inevitable mutagenic challenge occurring in normal aerobic metabolism, generating a large amount of reactive oxygen species (ROS) as by-products during respiration or oxidation-reduction reaction [1,2,3]

  • Increasing evidence shows that the nucleotide pool is a significant target for oxidative modification via ROS and substantial portion of the oxidative damage to genomic DNA is caused by incorporation of oxidized dNTPs from the nucleotide pool [3,6,7]

  • Mycobacterial mazG is an antimutator Previously, we demonstrated that lack of the MazG NTP-PPase activity in Mycobacterium smegmatis (Msm) strain mc2 155 rendered the bacilli more susceptible to killing by hydrogen peroxide (H2O2) [28]

Read more

Summary

Introduction

Oxidative damage to DNA and the DNA precursors, deoxynucleotides (dNTPs) is an inevitable mutagenic challenge occurring in normal aerobic metabolism, generating a large amount of reactive oxygen species (ROS) as by-products during respiration or oxidation-reduction reaction [1,2,3]. Increasing evidence shows that the nucleotide pool is a significant target for oxidative modification via ROS and substantial portion of the oxidative damage to genomic DNA is caused by incorporation of oxidized dNTPs from the nucleotide pool [3,6,7]. Due to their ambiguous conformation (anti/syn) compared to that of the canonical dNTPs, incorporation of oxidized dNTPs into DNA is known to cause mispairing and mutation, and may be related to carcinogenesis, aging and neurodegeneration [6,8,9,10]. Like the DNA repair enzymes, elimination of the oxidatively damaged dNTPs from the nucleotide pool is an important defense line for cells to maintain genetic stability

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call