Abstract

Growth inhibition of the intracellular bacterial pathogens Mycobacterium bovis and M. tuberculosis by lymphokine-activated murine bone marrow macrophages was studied. Mycobacterial growth was assessed by the uptake of 3H-uracil or by determination of colony-forming units. Stimulation of macrophages with recombinant interferon-gamma (r-IFN-gamma) or with IFN-gamma-containing supernatants from antigen- or mitogen-stimulated T cells markedly reduced growth of M. bovis strain BCG Phipps or M. tuberculosis strain H37Rv. In contrast, M. tuberculosis strain Middelburg proved resistant to lymphokine-stimulated macrophages, suggesting heterogeneous susceptibility toward lymphokine-activated macrophages among different M. tuberculosis strains. Stimulation could be blocked by anti-IFN-gamma antiserum, indicating that IFN-gamma was capable of activating antimycobacterial macrophage functions. Stimulation with r-IFN-gamma and subsequent phagocytosis of M. bovis did not lead to increased chemiluminescence responses by bone marrow macrophages, suggesting that mycobacterial growth inhibition was not paralleled by the release of reactive oxygen metabolites. We conclude that IFN-gamma-mediated macrophage activation represents a major step in acquired resistance against tuberculosis and that evasion from this mechanism contributes to mycobacterial virulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call