Abstract

BackgroundThe MYCN amplification is a defining hallmark of high-risk neuroblastoma. Due to irregular oncogenes orchestration, tumor cells exhibit distinct fatty acid metabolic features from non-tumor cells. However, the function of MYCN in neuroblastoma fatty acid metabolism reprogramming remains unknown.MethodsGas Chromatography-Mass Spectrometer (GC-MS) was used to find the potential target fatty acid metabolites of MYCN. Real-time PCR (RT-PCR) and clinical bioinformatics analysis was used to find the related target genes. The function of the identified target gene ELOVL2 on cell growth was detected through CCK-8 assay, Soft agar colony formation assay, flow Cytometry assay and mouse xenograft. Chromatin immunoprecipitation (ChIP) and Immunoprecipitation-Mass Spectrometer (IP-MS) further identified the target gene and the co-repressor of MYCN.ResultsThe fatty acid profile of MYCN-depleted neuroblastoma cells identified docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid with anti-tumor activity, significantly increased after MYCN depletion. Compared with MYCN single-copy neuroblastoma cells, DHA level was significantly lower in MYCN-amplified neuroblastoma cells. RT-PCR and clinical bioinformatics analysis discovered that MYCN interfered DHA accumulation via ELOVL fatty acid elongase 2 (ELOVL2) which is a rate-limiting enzyme of cellular DHA synthesis. Enforced ELOVL2 expression in MYCN-amplified neuroblastoma cells led to decreased cell growth and counteracted the growth-promoting effect of MYCN overexpression both in vitro and vivo. ELOVL2 Knockdown showed the opposite effect in MYCN single-copy neuroblastoma cells. In primary neuroblastoma, high ELOVL2 transcription correlated with favorable clinical tumor biology and patient survival. The mechanism of MYCN-mediated ELOVL2 inhibition contributed to epigenetic regulation. MYCN recruited PRC1 (Polycomb repressive complex 1), catalysed H2AK119ub (histone 2A lysine 119 monoubiquitination) and inhibited subsequent ELOVL2 transcription.ConclusionsThe tumor suppressive properties of DHA and ELOVL2 are repressed by the MYCN and PRC1 jointly, which suggests a new epigenetic mechanism of MYCN-mediated fatty acid regulation and indicates PRC1 inhibition as a potential novel strategy to activate ELOVL2 suppressive functions.

Highlights

  • The MYCN ProtoOncogene (MYCN) amplification is a defining hallmark of high-risk neuroblastoma

  • MYCN negatively regulates docosahexaenoic acid (DHA) synthesis via ELOVL fatty acid elongase 2 (ELOVL2) To identify the potential role of MYCN in fatty acid (FA) metabolism regulation, we first used Gas Chromatography-Mass Spectrometer (GC-MS) to profile the medium- and long-chain FA landscape after MYCN depletion in the MYCN-amplified neuroblastoma cells IMR32

  • ELISA analysis validated that DHA was dramatically upregulated (3.1- to 3.2- fold in IMR32 and 2.9- to 3.6- fold in another MYCN-amplified neuroblastoma cell line, BE(2)-C cells (Fig. 1b)

Read more

Summary

Introduction

The MYCN amplification is a defining hallmark of high-risk neuroblastoma. Due to irregular oncogenes orchestration, tumor cells exhibit distinct fatty acid metabolic features from non-tumor cells. The function of MYCN in neuroblastoma fatty acid metabolism reprogramming remains unknown. MYC mediates global metabolic reprogramming to match the enhanced demand for anabolic metabolites in tumor cells [3]. Recent studies have shown that tumors with an amplified MYCN gene, which is considered the most robust prognostic marker indicating poor outcome for neuroblastoma patients, enhanced glutamine transport and increased glutaminolysis for increased tumor cell growth [10,11,12,13,14]. The function of MYCN in global metabolic reprogramming is controversial. The potential regulatory role of MYCN in metabolic reprogramming, especially fatty acid metabolism, should be comprehensively investigated to pave the way for novel therapies

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call