Abstract

Recent convergence of biotechnological and design tools has stimulated an emergence of new design practices utilizing natural mechanisms to program matter in a bottom-up approach. In this paper, the fibrous network of mycelium—the vegetative part of fungi—is employed to produce sustainable alternatives for synthetic foams. Current research on mycelium-based materials lacks essential details regarding material compositions, incubation conditions, and fabrication methods . The paper presents the results of ongoing research on employing mycelium to provide cleaner architecture and design products with sustainable lifecycles. The paper opens with a critical review of current projects, products, and scientific literature using mycelium in design and architecture. In the second section, material properties of varied fungi-substrate compositions and fabrication methods are evaluated and compared through changes in essential chemical parameters during fermentation, visual impression, water absorbency , and compression strength tests. Then, potential architecture and design implications related to the material properties are discussed. Results indicate a clear correlation between fungi, substrate, mold properties, and incubation conditions on final material characteristics, depicting a clear effect on material density, water absorbency, and the compressive strength of the final bio-composite. Finally, two primary case studies demonstrate implications for mycelium-based composites for circular design and architectural applications. The study shows that in order to produce desirable designs and performance within an inclusive circular approach, parameters such as material composition and fabrication conditions should be considered according to the target function of the final product throughout the design process. • Mycelium employed to upcycle regional tree-pruning waste into cleaner products. • Materials and methods for fabricating mycelium composites are discussed. • Clear correlation is shown between material composition and material properties. • Implications for sustainable architecture and design products are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call