Abstract

Wnt signalling regulates embryonic development and tissue homoeostasis by modulating cell proliferation, differentiation and migration. Dapper1 (Dpr1) has been shown to be an important key negative regulator of Wnt signalling by promoting Dishevelled (Dvl) degradation. In the present study, we found that Myc-interacting zinc-finger protein 1 (MIZ1) interacts with Dpr1 and this interaction attenuates the ability of Dpr1 to induce Dvl2 degradation, thus enhancing Wnt signalling. Mechanistically, MIZ1 is translocated from the nucleus to the cytoplasm upon Wnt3a stimulation or overexpression of Dpr1 and Dvl2, disrupting the interaction between Dpr1 and Dvl2. Furthermore, MIZ1 can promote the proliferation of breast cancer MDA-MB-231 and BT-549 cells through Wnt signalling and reverse the anti-proliferative effect of Dpr1 on colorectal cancer Caco-2. Together, our findings establish a novel layer of Wnt signalling regulation via the MIZ1-Dpr1-Dvl axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call