Abstract

Myc-driven tumorigenesis involves a non-transcriptional role for Myc in over-activating replicative Cdc45-MCM-GINS (CMG) helicases. Excessive stimulation of CMG helicases by Myc mismanages CMG function by diminishing the number of reserve CMGs necessary for fidelity of DNA replication and recovery from replicative stresses. One potential outcome of these events is the creation of DNA damage that alters genomic structure/function, thereby acting as a driver for tumorigenesis and tumor heterogeneity. Intriguingly, another potential outcome of this Myc-induced CMG helicase over-activation is the creation of a vulnerability in cancer whereby tumor cells specifically lack enough unused reserve CMG helicases to recover from fork-stalling drugs commonly used in chemotherapy. This review provides molecular and clinical support for this provocative hypothesis that excessive activation of CMG helicases by Myc may not only drive tumorigenesis, but also confer an exploitable “reserve CMG helicase vulnerability” that supports developing innovative CMG-focused therapeutic approaches for cancer management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call