Abstract

Heritable DNA methylation is a highly conserved epigenetic mark that is important for many biological processes. In a previous transcriptomic study on the fruit skin pigmentation of apple (Malus domestica Borkh.) cv. 'Red Delicious' (G0) and its four continuous-generation bud sport mutants including 'Starking Red' (G1), 'Starkrimson' (G2), 'Campbell Redchief' (G3) and 'Vallee spur' (G4), we identified MYB transcription factors (TFs) MdLUX and MdPCL-like involved in regulating anthocyanin synthesis. However, how these TFs ultimately determine the fruit skin color traits remains elusive. Here, bioinformatics analysis revealed that MdLUX and MdPCL-like contained a well-conserved motif SH[AL]QKY[RF] in their C-terminal region and were located in the nucleus of onion epidermal cells. Overexpression of MdLUX and MdPCL-like in 'Golden Delicious' fruits, 'Gala' calli and Arabidopsis thaliana promoted the accumulation of anthocyanin, whereas MdLUX and MdPCL-like suppression inhibited anthocyanin accumulation in 'Red Fuji' apple fruit skin. Yeast one-hybrid assays revealed that MdLUX and MdPCL-like may bind to the promoter region of the anthocyanin biosynthesis gene MdF3H. Dual-luciferase assays indicated that MdLUX and MdPCL-like activated MdF3H. The whole-genome DNA methylation study revealed that the methylation levels of the mCG context at the upstream (i.e., promoter region) of MdLUX and MdPCL-like were inversely correlated with their mRNA levels and anthocyanin accumulation. Hence, the data suggest that MYB_SH[AL]QKY[RF] TFs MdLUX and MdPCL-like promote anthocyanin biosynthesis in apple fruit skins through the DNA hypomethylation of their promoter regions and the activation of the structural flavonoid gene MdF3H.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call