Abstract

While human brains are specialized for complex and variable real world tasks, most neuroscience studies reduce environmental complexity, which limits the range of behaviours that can be explored. Motivated to overcome this limitation, we conducted a large-scale experiment with electroencephalography (EEG) based brain-computer interface (BCI) technology as part of an immersive multi-media science-art installation. Data from 523 participants were collected in a single night. The exploratory experiment was designed as a collective computer game where players manipulated mental states of relaxation and concentration with neurofeedback targeting modulation of relative spectral power in alpha and beta frequency ranges. Besides validating robust time-of-night effects, gender differences and distinct spectral power patterns for the two mental states, our results also show differences in neurofeedback learning outcome. The unusually large sample size allowed us to detect unprecedented speed of learning changes in the power spectrum (~ 1 min). Moreover, we found that participants' baseline brain activity predicted subsequent neurofeedback beta training, indicating state-dependent learning. Besides revealing these training effects, which are relevant for BCI applications, our results validate a novel platform engaging art and science and fostering the understanding of brains under natural conditions.

Highlights

  • Advances in cognitive neuroscience are increasingly engaging wider audiences

  • We present here an electroencephalography (EEG) based brain-computer-interface (BCI) experiment that was conducted as a part of a public art installation, ‘My Virtual Dream’, during Toronto’s Nuit Blanche art festival on October 5, 2013

  • We focused on the concentration training effect and performed a series of Partial Least Squares (PLS) analyses with the number of participants, N, ranging from 10 to 500 in multiples of 10

Read more

Summary

Introduction

Advances in cognitive neuroscience are increasingly engaging wider audiences. While traditional experiments in controlled laboratory conditions and simple paradigms have contributed significant insights into brain function, it is widely recognized that our understanding of complex cognitive phenomena requires complex realistic environments [1,2,3,4]. We present here an electroencephalography (EEG) based brain-computer-interface (BCI) experiment that was conducted as a part of a public art installation, ‘My Virtual Dream’, during Toronto’s Nuit Blanche art festival on October 5, 2013 (scotiabanknuitblanche.ca). 'My Virtual Dream': Collective Neurofeedback design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.