Abstract

Abstract: MXene-based multicomponent materials are 2D substances derived from transition metal (M) with carbide/nitride combinations having several propitious uses, including application in energy storage devices for high-performance electrodes for Lithium-ion batteries (LIBs) fabrication. The suitability of these new classes of materials for LIB electrodes can be attributed to their high conductivity combined with their excellent surface properties desirable for electrode applications, such as fast charge-discharge capability, high storage capacity and high rate capacity. However, there are several challenges possessed by MXene-based nanomaterials in the application of their electrodes in future flexible and wearable devices, demanding more research work and development strategies. After a brief overview of MXenes used in batteries, this paper deals with the synthesis, morphology-properties correlations, and their performance. Finally, this paper headlines the advantages, limitations, and challenges of MXene-based electrodes for LIBs, ending with concluding remarks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call