Abstract

The application of Li-S batteries has been hindered by the shuttling behavior and sluggish reaction kinetics of polysulfides. Here an effective polysulfide immobilizer and catalytic promoter is developed by proposing oxygen-vacancy-rich Tin O2 n -1 quantum dots (OV-Tn QDs) decorated on porous carbon nanosheets (PCN), which are modulated using Ti3 C2 Tx MXene as starting materials. The Tn QDs not only confine polysulfides through strong chemisorption but also promote polysulfide conversion via redox-active catalysis. The introduction of oxygen vacancies further boosts the immobilization and conversion of polysulfides by lowering the adsorption energy and shortening the bond lengths. The PCN provides a physical polysulfide confinement as well as a flexible substrate preventing OV-Tn QDs from aggregation. Moreover, the two building blocks are conductive, thereby effectively improving the electron/charge transfer. Finally, the ultrasmall size of QDs along with the porous structure endows OV-Tn QDs@PCN with large specific surface area and pore volume, affording adequate space for S loading and volume expansion. Therefore, the OV-Tn QDs@PCN/S delivers a high S loading (79.1 wt%), good rate capability (672 mA h g-1 at 2 C), and excellent long-term cyclability (88% capacity retention over 1000 cycles at 2 C). It also exhibits good Li+ storage under high S-mass loading and lean electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call