Abstract

Flexible electronics have gained significant interest due to their potential applications in wearable devices, biomedical sensors, and flexible displays. This study explores the combination of MXene and cellulose nanocrystals (CNC) for the development of flexible, conductive, and degradable materials. CNC and MXene are high-performance nanomaterials with known degradability. CNC can self-assemble into highly ordered layers and act as an ideal structural companion for enabling large surface MXene-based devices with outstanding performance. Three fabrication routes are explored in this work: self-assembly, drop casting, and dip coating. The mechanical and electrical properties of the CNC-MXene composite films were assessed. Tensile testing revealed that dip-coated films in high-loadings of MXene could exhibit enhanced toughness of up to 1.9 MJ‧m−3, higher than pure MXene or CNC. The electrical conductivity of the films varied depending on MXene concentration and drying, exhibiting superior conductivity in self-assembly with higher MXene loading and rapid drying that prevents oxidation. Self-assembled MXene-CNC with a 1:3 MXene-to-CNC ratio maintained high conductivity of 2.2 × 105 S‧m−1. Zeta potential measurements indicate that CNC enhances the stability of MXene dispersion. These findings demonstrate good synergy between CNC and MXenes for applications in flexible, transparent, and environmentally degradable electronic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.