Abstract

Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics. The large surface-area-to-volume ratio and internal surface areas endow two-dimensional (2D) materials with high mobility and high energy density; therefore, 2D materials are very promising candidates for Li ion batteries and supercapacitors with comprehensive investigations. In 2011, a new kind of 2D transition metal carbides, nitrides and carbonitrides, MXene, were successfully obtained from MAX phases. Since then about 20 different kinds of MXene have been prepared. Other precursors besides MAX phases and even other methods such as chemical vapor deposition (CVD) were also applied to prepare MXene, opening new doors for the preparation of new MXene. Their 2D nature and good electronic properties ensure the inherent advantages as electrode materials for electrochemical energy storage. In this review, we summarize the recent progress in the development of MXene with emphasis on the applications to electrochemical energy storage. Also, future perspective and challenges of MXene-based materials are briefly discussed regrading electrochemical energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.