Abstract

Electrocatalytic N2 reduction reaction (NRR) represents an appealing solution for sustainable ammonia production, whereas exploring high‐efficiency NRR catalysts is highly desired but extremely challenging. Herein, we combine Ti3C2Tx‐MXene quantum dots (MQDs) with porous Cu nanosheets to design a novel heterostructured MQDs/Cu as an effective and durable NRR catalyst. Impressively, MQDs/Cu showed a synergistically enhanced NRR activity with an NH3 yield of 78.5 μg h−1 mg−1 (−0.5 V) and a Faradaic efficiency of 21.3% (−0.4 V), far superior to pure MQDs and Cu, and outperforming the majority of the state‐of‐the‐art NRR catalysts. Density function theory computations demonstrated that the synergy of MQDs and Cu enabled the creation of interfacial Cu‐Ti dimer as dual‐active‐centers to strongly activate the absorbed N2 and promote the *N2H formation, consequently resulting in the much reduced energy barriers and greatly enhanced NRR performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.