Abstract
The most prevalent oral and maxillofacial cancer is oral squamous cell carcinoma (OSCC). Patient survival is compromised by relapse due to post-operative tumor remnants and significant mucosal defects. Photothermal therapy (PTT) is used to ablate local malignancies, but the capacity of tumor cells to resist it is correlated with the overexpression of heat shock protein 70 (HSP70). In this work, PTT and tissue engineering scaffold were rationally integrated to construct a Ti3C2 MXene, collagen, silk fibroin and quercetin composite scaffold (M-CSQ scaffold), a 3D printed biomaterial that simultaneously kill OSCC cells and promote the regeneration of the mucosal defects. The M-CSQ scaffolds were prepared by cryogenic 3D printing and freeze-drying techniques with sufficient pores that allow an abundant cell migration and provide a proliferation space. Ti3C2 MXene has excellent photothermal conversion ability and stability. Quercetin targeted HSP70 to decrease its expression in OSCC cells, consequently weakening their resistance to high temperature and enhancing the effect of PTT. The M-CSQ scaffold effectively killed OSCC cells in vitro and inhibited tumor growth in vivo. In addition, the M-CSQ scaffold provided adhesion sites for Sprague-Dawley rat (SD rat) buccal mucosal fibroblasts and promoted the repair of buccal mucosal wounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.