Abstract

AbstractOrganic optoelectronics have attracted widespread interdisciplinary research interest but lags far behind in the application in marine environmental detection. The organic photoelectrochemical transistor (OPECT) shows promise as a powerful tool for comprehensive monitoring and early warning of marine conditions, which can be further enhanced by the valuable signal amplification strategy of nanozyme‐mediated catalytic precipitation. Herein, OPECT technology is integrated with nanozyme‐mediated catalytic precipitation for the first time, establishing an ultrasensitive detection platform for okadaic acid (OA). Specifically, MXene@MnIn2S4 (MXMnIS) hybrid composed of Schottky‐junction is synthesized via a hydrothermal method, which can efficiently modulate the device with high current gain. Linking with a sandwich immunoassay, the Ru‐C3N4 nanozyme with peroxidase‐mimicking activity can catalyze the oxidation of 4‐chloro‐1‐naphthol (4‐CN) to form an insoluble precipitate on the electrode surface, resulting in a decrease in the photocurrent and altering the transistor response. Importantly, the proposed OPECT biosensor presented an excellent sensitivity and a low detection limit (32.5 pM), fully satisfying the fundamental requirements for the quantitative detection of intracellular and extracellular OA in the practical culture media of Prorocentrum lima at different growth stages. This OPECT platform based on the nanozyme‐mediated quenching effect is significant for effectively monitoring the safety of the marine ecological environment and food safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.