Abstract

MXene has attracted widespread attention in the field of antibacterial due to the unique photothermal and photodynamic property. However, its application in durable antimicrobial field is greatly limited by its instability and weak antibacterial activity. In this study, ultrasonic-impelled MXene was used to intercalate montmorillonite (MMT) layers and fabricate montmorillonite/MXene nanocomposites (MTX) with micro-nano protective structure. The nanoconfinement effect protected MXene from oxidation for 30 days, making it possible to long-term use. Furthermore, hydrophilic Ag NPs synthesized by natural polymer lignin were immobilized in the MTX, which could enhance the antibacterial effect of MTX and retard the cumulative release of Ag NPs. MTX/Ag exhibited excellent photothermal, photodynamic and antibacterial activity, achieving over 99.9 % antibacterial efficacy against S. aureus for 28 days. Meanwhile, the antibacterial mechanism of MTX/Ag has been thoroughly studied. Importantly, the stability of MTX endowed the MTX/Ag-NIR with photothermal stability and cyclic stability, achieving 30 days antifungal effect on wood powder. These studies provided a novel idea to fabricate a stable, long-acting, and efficient antibacterial agent for precious furniture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.